lunedì 23 marzo 2020

Stati misti, intrecciati e...

Come anticipato nel post "Stati puri, miscele e sovrapposizioni!", ora analizziamo un sistema composto da due elettroni e verifichiamo se si tratta di uno stato di spin puro o misto grazie alla matrice densità prima definita*. 

Consideriamo ad esempio un sistema composto da due elettroni preparati separatamente nei seguenti stati di spin (dove u e d sta per up e down):
|Ψ>=ψu|u>+ψd|d>   e   |Φ>=φu|u>+φd|d>.
Lo stato prodotto che descrive il sistema combinato è:
|ΨΦ>=(ψu|u>+ψd|d>)⊗(φu|u>+φd|d>)
quindi sviluppando il prodotto tensoriale indicato con si ottiene:
|ΨΦ>=ψuφu|uu>+ψuφd|ud>+ψdφu|du>+ψdφd|dd>.
con le condizioni di normalizzazione:
ψuψu+ψdψd=1   e   φuφudφd=1.
Nota: ψu è il complesso coniugato di ψu e lo stesso vale per gli altri valori.

Tuttavia si osservi che in generale un sistema composto da due elettroni è descritto dal seguente stato di spin:
|Ψ>=ψuu|uu>+ψud|ud>du|du>dd|dd>
che non è sempre rappresentabile da uno stato prodotto (vedi sopra) e per il quale vale la condizione di normalizzazione:
ψuuψuu+ψudψudduψduddψdd=1.
Nota: questo stato combinato è detto stato entangled (o intrecciato) proprio perché non può essere fattorizzato in due stati separati.

Ad esempio consideriamo una coppia di elettroni, preparata con spin opposti, il cui stato combinato non fattorizzabile è:
|Ψ>=(1/2)1/2|ud>+(1/2)1/2|du>
dove la somma degli stati |ud> e |du> rappresenta due coppie di elettroni con spin opposti in sovrapposizione quantistica, mentre il fattore (1/2)1/2 indica che la misura di uno dei due stati è equiprobabile poiché:
ψudψudduψdu=1/2.
Nota: possiamo ad esempio pensare al caso descritto nell'esperimento EPR (per chiarimenti vedi il post "Un esperimento chiave: EPR").

Calcoliamo quindi la matrice densità, già introdotta nel post "Stati puri, miscele e sovrapposizioni!", che è così definita:
ρ=|Ψ><Ψ|=(1/2)(|ud>+|du>)(<ud|+<du|)
dalla quale svolgendo il prodotto si ottiene:
ρ=(1/2)(|ud><ud|+|ud><du|+|du><ud|+|du><du|).

Premesso che indicheremo i vettori colonna come vettori riga trasposti, scegliamo due vettori di base: |u>=(1,0)T e |d>=(0,1)T (dove T indica la matrice trasposta)** e sviluppiamo i prodotti tensoriali:
|ud>=(1,0)T⊗(0,1)T=(0,1,0,0)T   ,   |du>=(0,1)T⊗(1,0)T=(0,0,1,0)T
 <ud|=(1,0)⊗(0,1)=(0,1,0,0)   ,   <du|=(0,1)⊗(1,0)=(0,0,1,0).

Quindi, svolgendo i prodotti sopra definiti, si ottiene la matrice [4x4]:
Infatti come già visto nel precedente post, gli elementi di ρ sono i prodotti delle ampiezze di probabilità per i coniugati; in particolare nel nostro caso risulta:
ψudψududψduduψudduψdu=1/2 

mentre gli altri elementi di ρ sono tutti nulli (per come è stato definito lo stato |Ψ>=ψud|ud>+ψdu|du> con ψuddu=(1/2)1/2).

A questo punto possiamo verificare facilmente la relazione ρ=ρ2 (basta moltiplicare la matrice ρ per se stessa); ciò significa che siamo in presenza di uno stato puro quindi la conoscenza del sistema combinato è completa***.
Nota: il sistema è stato preparato in uno stato definito di spin perciò è puro, inoltre ciò implica una forte correlazione tra gli spin delle due particelle (poiché se un elettrone è misurato up l'altro è down e viceversa).

Tuttavia la matrice densità ρ riguarda tutto il sistema combinato mentre noi vorremmo descrivere lo stato di ogni singolo elettrone (chiamiamoli A e B).

A questo scopo introduciamo la matrice densità ridotta che permette di studiare uno dei due sottosistemi (supponiamo A) ed è così definita:

ρA=∑<i|ρ|i>=TrBρ
rispetto ad una base di vettori |i> del sistema B.
Nota: TrB è l'operatore traccia parziale sulla base di B; in modo equivalente si ha ρB=TrAρ. Inoltre se |Ψ> è uno stato prodotto risulta ρ=ρAρB.

Perciò nel caso considerato possiamo calcolare la matrice ridotta dello stato di spin dell'elettrone A (oppure di quello B) e risulta:
ρA=1/2(|u><u|+|d><d|)=1/2(1,0)T(1,0)+1/2(0,1)T(0,1)=(1/2)I
dove con I abbiamo indicato la matrice identità; da ciò si deduce subito che ρAρA2 cioè siamo in presenza di uno stato composto(!)
Nota: I è una matrice diagonale con tutti gli elementi pari a 1 perciò I2=I.

Ciò significa che gli stati dell'elettrone A (oppure di quello B) non sono in sovrapposizione quantistica, l'incertezza sullo spin è in realtà dovuta alla non completa conoscenza dello stato del sottosistema-elettrone e la probabilità statistica che lo spin sia up oppure down è pari a 1/2.
Nota: a differenza della meccanica classica però, nemmeno in linea di principio si può definire lo stato del sistema A (o B) prima della misura.

È interessante osservare che il famoso Paradosso del gatto di Schrödinger può essere trattato come lo stato entangled che abbiamo ora considerato; ciò significa che anche in questo caso non si ha sovrapposizione di due stati distinti (gatto vivo e gatto morto) poiché il sottosistema "gatto" si trova in uno stato misto di tipo statistico e non è in sovrapposizione quantistica.

(*) Nel precedente post abbiamo definito, per uno stato puro, la matrice densità ρ=|Ψ><Ψ| per la quale risulta ρ2=|Ψ><Ψ|Ψ><Ψ|=ρ; invece per uno stato misto si pone ρ=∑pi|Ψi><Ψi| dove pi è la probabilità che il sistema si trovi nello stato i-esimo e in questo caso risulta ρ≠ρ2.
(**) Si osservi che i vettori di base scelti soddisfano correttamente le condizioni di ortonormalità: <u|u>=<d|d>=1 e <u|d>=<d|u>=0.
(***) Le teorie a variabili nascoste affermano invece che la conoscenza quantistica del sistema composto non è completa proprio perché lo stato dei singoli sottositemi non è definito con certezza.

martedì 3 marzo 2020

Stati puri, miscele e sovrapposizioni!

Come è noto, definito uno stato |Ψ> di un qualsiasi sistema quantistico la sua evoluzione temporale, una volta fissato lo stato iniziale, è descritta dalla equazione di Schrödinger (vedi Wikipedia), scritta nella notazione di Dirac:
i(h/2π)∂|Ψ>/∂t=H|Ψ>
dove il valore medio dell'operatore hamiltoniano <H> rappresenta il valore di aspettazione dell'energia del sistema.

Si osservi che qui ci limitiamo a trattare il caso di uno spazio finito-dimensionale (cioè definito da n vettori di base |i>) per il quale si ha:
|Ψ>=∑ψi|i>
dove ψi sono le ampiezze di probabilità relative ai vettori di base |i>.
Nota: per chiarimenti sul vettore di stato di un sistema quantistico vedi i post "I numeri Compessi e la M.Q." e "Le grandezze Osservabili!".

È però possibile dare una descrizione alternativa ma equivalente a quella di Schrödinger definendo il seguente Operatore di densità*:
ρ=|Ψ><Ψ|
dove ρ è rappresentato da una matrice quadrata che si ottiene moltiplicando il vettore colonna |Ψ> per il suo duale vettore riga <Ψ|.
Nota: l'operatore |Ψ><Ψ| è un proiettore poiché applicato ad uno stato |Φ> si ha |Ψ><Ψ|Φ>=k|Ψ> con k=<Ψ|Φ> (cioè proietta |Φ> lungo |Ψ>).

Poiché il vettore di stato è definito rispetto ad una base ortonormale di vettori |i> si ha che gli elementi di matrice ρij sono dati da**
ρij=<i|ρ|j>
da cui segue subito (sostituendo ρ=|Ψ><Ψ| ed essendo ψi=<i|Ψ>):
ρij=<i|Ψ><Ψ|j>=ψiψj
cioè gli elementi di ρ sono i prodotti delle ampiezze di probabilità (associate ai vettori di base dello stato considerato) per i coniugati.
Nota: solo quando i=j il prodotto ψiψi=|ψi|2 rappresenta la probabilità che il sistema venga misurato nello stato i-esimo.

Inoltre se abbiamo a che fare con un sistema il cui stato non è ben definito, ma è dato da un ensemble statistico di stati possibili i} si può porre:
ρ=∑pi|Ψi><Ψi|
dove pi è la probabilità statistica che il sistema si trovi nello stato i-esimo: in pratica è la media pesata su tutti gli stati possibili del sistema con ∑pi=1.
Nota: la probabilità pi è di tipo statistico poiché è dovuta alla non esatta conoscenza dello stato del sistema (non è una sovrapposizione quantistica).

Si parla quindi di stato puro quando le pi sono tutte nulle tranne una (e pari a 1), mentre negli altri casi avremo uno stato misto poiché si determina una media pesata su tutti gli stati |Ψi> in cui si potrebbe trovare il sistema.

Facciamo subito un esempio di stato puro e consideriamo lo stato di spin di un singolo elettrone (vedi il post "I numeri Complessi e la M.Q.") che può essere descritto in generale (ad es. rispetto alle basi |u> e |d> lungo Z):
|Ψ>=ψu|u>+ψd|d>.
Ciò significa che, dato uno spin preparato in uno stato qualunque |Ψ> e un apparato di misura orientato lungo l'asse Z, i prodotti ψuψu e ψdψd sono le rispettive probabilità che lo spin si trovi nello stato |u> oppure |d>.
Nota: secondo i postulati quantistici, prima della misura lungo l'asse Z gli stati |u> e |d> sono in sovrapposizione quantistica.

Si ricordi infatti che il principale postulato della meccanica quantistica stabilisce che il prodotto ψiψi (cioè i|2) dà la probabilità che il sistema si trovi nello stato i-esimo (ψi è il complesso coniugato di ψi).

Perciò, come mostrato sopra, le componenti della matrice ρ sono:
ρuuuψu , ρuduψd , ρdudψu , ρdddψd
e in particolare risulta: Trρ=ρii=∑ψiψi=1.
Nota: Tr è l'operatore traccia cioè la somma degli elementi ψiψi della diagonale di ρ quindi si ha Trρ=1 (essendo normalizzata a 1).

Ad esempio se prepariamo (misuriamo) lo stato di spin dell'elettrone nella direzione dell'asse X positivo (detto stato right) allora possiamo scrivere (vedi il post "I numeri Complessi e la M.Q."):
|Ψr>=(1/2)1/2|u>+(1/2)1/2|d>
quindi risulta per tutti gli elementi della matrice ρ [2x2]:
ρuuuddu=ρdd=1/2

dove correttamente si ha Trρ=ρuudd=1/2+1/2=1 (cioè la condizione di normalizzazione ψuψudψd=1 è soddisfatta).
Nota: perciò la probabilità che lo spin, misurato lungo l'asse Z, sia up oppure down è pari a 1/2.

Ma ciò che risulta di grande interesse è che per uno stato puro, come quello appena trattato, vale la condizione*** ρ=ρ2 e ciò ci permette di distinguere, come vedremo nel prossimo post, uno stato puro da uno stato misto!
Nota: moltiplicando per se stessa la matrice ρ composta da elementi uguali a 1/2 si ottiene di nuovo la matrice ρ.

(*) L'evoluzione di ρ nel tempo è descritta dalla equazione di Von Neumann:
i(h/2π)∂ρ/∂t=[H,ρ] dove [H,ρ]=Hρ-ρH è il commutatore di H e ρ
(**) Posto |Ψ>=∑ψj|j> si ha <i|Ψ>=∑ψj<j|i>=ψi poiché solo quando j=i si ha <i|i>=1; inoltre dato un operatore A risulta Aij=<i|A|j> infatti possiamo scrivere <i|A|Ψ>=∑ψj<i|A|j>=∑ψjAij <i|A|Ψ>=<i|∑Φj|j>=Φi (per j=i), che rappresenta l'equazione A|Ψ>=|Φ> in forma matriciale.
(***) Per uno stato puro si ha ρ=|Ψ><Ψ| quindi ρ2=|Ψ><Ψ|Ψ><Ψ|=ρ essendo per la condizione di normalizzazione <Ψ|Ψ>=1.