lunedì 1 ottobre 2018

Il Principio di minima Azione!

Introduciamo questo post dicendo subito che (vedi Wikipedia):
"In fisica il principio di minima azione è un principio variazionale che stabilisce che nei fenomeni della natura l'azione viene sempre minimizzata. A partire da questo principio si determina l'equazione del moto di un sistema dinamico".

Come vedremo il principio variazionale di minima azione si definisce grazie al calcolo delle variazioni che è "un campo dell'analisi matematica che si occupa della ricerca dei punti estremali (massimi e minimi) dei cosiddetti funzionali, ovvero funzioni il cui dominio è a sua volta un insieme di funzioni" (vedi Wikipedia).

Consideriamo ad esempio il moto di una particella con legge oraria q(t) e velocità q'(t)=dq(t)/dt), come vedremo possiamo definire una ipotetica funzione L(q,q') (detta lagrangiana* del sistema), che sia appunto funzione della coordinata q e della velocità q'.
Notaconsideriamo per semplicità il caso con una solo coordinata; inoltre q indica una coordinata generale, non necessariamente cartesiana.

A questo scopo per definire l'equazione del moto, introduciamo un'altra funzione S(q(t)) chiamata Azione in cui compare la stessa L(q,q') (in realtà S è un funzionale essendo una funzione di funzione), ed è così definita:
S(q(t))=∫t1t2L(q,q')dt.

Come si vede S(q(t)) dipende dal percorso q(t) compiuto dalla particella (una volta fissati il punto iniziale q(t1) e finale q(t2)); in effetti esistono infiniti percorsi tra q(t1) e q(t2) su cui calcolare S(q(t)) che perciò può variare con continuità, in funzione del percorso.
Nota: questa osservazione ci permette di trattare S(q) come se fosse una funzione (differenziabile) anche se è una funzione di funzione (funzionale).

Facciamo quindi l'ipotesi fondamentale, secondo cui l'equazione del moto della particella si può ricavare ponendo la seguente condizione su S(q):
δS(q)=0.

Tale condizione è del tutto analoga a porre nullo il differenziale dF(x) di una funzione F(x) (a un solo valore) per trovare i punti estremali (massimo, minimo o sella): si cerca cioè quale sia, tra tutti quelli possibili, il percorso q che rende minimo l'integrale S(q) fissati i punti iniziale e finale.
Nota: si parla di Principio di minima azione poiché, nel caso del moto meccanico, la condizione δS=0 individua un minimo per l'azione S.

Questa condizione si traduce quindi nella seguente equazione:
δS(q)=δt1t2L(q,q')dt=t1t2δL(q,q')dt=0
dove
δL(q,q')=(∂L/∂q)δq+(∂L/∂q')δq'
è l'analogo del differenziale di una funzione F(x,y) a due variabili (si ricordi infatti che dF(x,y)=(∂F/∂x)dx+(∂F/∂y)dy); inoltre si è posto δq'=dδq/dt.

Prima di sviluppare l'integrale è utile fare la derivata, rispetto al tempo, del termine (∂L/∂q')δq:
d(∂L/∂q')δq/dt=δqd(∂L/∂q')/dt+(∂L/∂q')δq'
da cui si ricava facilmente il termine (∂L/∂q')δq' che useremo di seguito:
(∂L/∂q')δq'=d(∂L/∂q')δq/dt-δqd(∂L/∂q')/dt.

Possiamo quindi inserire nell'integrale del δS(q) il valore del δL(q,q') prima definito (sostituendo poi il termine (∂L/∂q')δq' appena ricavato); si ottiene perciò:
δS(q)=∫t1t2δL(q,q')dt=t1t2[(∂L/∂q)δq+(∂L/∂q')δq']dt=
=∫t1t2(∂L/∂q)δqdt+t1t2[d(∂L/∂q')δq/dt]dt-t1t2[δqd(∂L/∂q')/dt]dt.

Si osservi che il secondo termine a destra dell'equazione è nullo risultando:
t1t2[d(∂L/∂q')δq/dt]dt=[(∂L/∂q')δq]t1t2=0
avendo posto come condizione al contorno δq(t1)=δq(t2)=0 (dato che i punti iniziale e finale del percorso non variano).

Perciò se vogliamo che il δS sia nullo dovremo porre (raccogliendo δqdt dal primo e terzo termine dell'equazione):
δS(q)=t1t2[(∂L/∂q)-d(∂L/∂q')/dt]δqdt=0
ciò significa che il termine sotto integrale deve essere nullo (essendo δq≠0):
∂L/∂q-d(∂L/∂q')/dt=0.
Questa è proprio l'equazione, detta di Eulero-Lagrange, che L(q,q') deve soddisfare per il Principio di minima azione** e che rappresenta l'equazione del moto del sistema (l'analogo per la meccanica di F=mq'').

Ma a questo punto resta una domanda fondamentale, come è fatta la lagrangiana L(q,q') di un sistema dinamico qualsiasi?

Ebbene si ipotizza che ogni sistema fisico abbia la propria lagrangiana***; ad esempio nel caso di sistemi meccanici si pone (e se ne può verificare per via sperimentale la validità):
L(q,q')=T(q')-V(q)
dove T(q') è l'energia cinetica del sistema (che dipende dalla velocità q') e V(q) è l'energia potenziale (funzione della posizione q).
In particolare ricordiamo che per una particella di massa m risulta:
T(q')=mq'2/2   e   -∂V(q)/∂q=F(q) 
dove F(q) è la forza a cui è sottoposta la particella lungo il percorso.
Nota: anche nel caso non conservativo dove non è definibile un potenziale (ad esempio per il campo magnetico), possiamo introdurre una funzione L(q,q') che soddisfi il principio di minima azione.

Si noti che tale equazione è equivalente a quella del moto di Newton F=mq'' (dove q'' è l'accelerazione impressa alla particella dalla forza F); per mostrarlo basta inserire L=T(q')-V(q) nell'equazione di Eulero-Lagrange e poi derivare (ricordando che T dipende solo da q' mentre V dipende da q):
∂L/∂q-d(∂L/∂q')/dt=-∂V/∂q-d(∂T/∂q')/dt=F-mq''=0.
(Per approfondimenti vedi il seminario sul Principio di minima azione di Arrigo Amadori).

(*) L'introduzione della funzione L(q,q') è dovuta a Lagrange ed è apparsa nel suo libro "Méchanique Analitique" nel 1788 scritto proprio con lo scopo di ridurre la teoria meccanica ad operazioni algebriche, senza ragionamenti geometrici o meccanici (in effetti il libro non contiene figure).
(**) Il Principio di minima azione è un principio locale (essendo espresso da una equazione differenziale) e quindi la scelta del percorso viene definita puntualmente, istante per istante, senza nessun tipo di finalismo.
(***) Tutte le leggi fondamentali della fisica possono essere scritte nei termini di una lagrangiana. In particolare L=(g)1/2(R-(1/2)FµvFµv-ψ*Dψ) descrive un sistema dinamico di particelle come elettroni e quark, soggette a gravità, campi elettromagnetici e forze nucleari.

Nessun commento:

Posta un commento