In questo post seguiremo la derivazione data più recentemente dal fisico francese Claude Elbaz (vedi “On De Broglie waves and Compton waves of massive particles”, Phys. Lett. 109A, 1985, pag.7).
Nel post "Ma cos'è una 'Onda'?" abbiamo definito una funzione f(x,t) che rappresenta un generico fenomeno oscillatorio che per ipotesi si propaga lungo l'asse X:
Quindi se ad esempio consideriamo il caso di un'onda sinusoidale di ampiezza costante A il fenomeno periodico è ben descritto dalla relazione:
È noto che Einstein nel 1905 ipotizzò un comportamento di tipo particellare della radiazione elettromagnetica assegnando ad ogni fotone (di cui per ipotesi la radiazione è composta) una energia pari a quella già proposta da Planck (che però non aveva ben compreso la portata della sua ipotesi)*:
Mentre de Broglie ipotizzò, per questioni di simmetria (vedi Wikipedia), che anche ad ogni particella fosse associato un non ben definito moto periodico T (e quindi una fase S=kx±wt) e che perciò valesse la relazione:
Perciò, fissato ad esempio il punto x0=0, la fase S=k0x0±w0t0 del moto periodico della particella in quiete diventa per ipotesi:
f(x,t)=f(x±Vt)
dove V è una costante che definisce la velocità di fase dell'onda (mentre il segno "±" indica se l'onda è regressiva o progressiva).Quindi se ad esempio consideriamo il caso di un'onda sinusoidale di ampiezza costante A il fenomeno periodico è ben descritto dalla relazione:
f(x,t)=Asin(kx±wt)
dove k=2π/L e w=2π/T essendo rispettivamente L e T la lunghezza e il periodo dell'onda (quindi V=L/T=w/k è la velocità di fase dell'onda). Ora ciò che viene definita fase dell'onda periodica è proprio l'argomento S=kx±wt che in pratica definisce il fenomeno fisico ondulatorio.È noto che Einstein nel 1905 ipotizzò un comportamento di tipo particellare della radiazione elettromagnetica assegnando ad ogni fotone (di cui per ipotesi la radiazione è composta) una energia pari a quella già proposta da Planck (che però non aveva ben compreso la portata della sua ipotesi)*:
E=h/T
dove T è il periodo dell'onda associata ad ogni fotone.Mentre de Broglie ipotizzò, per questioni di simmetria (vedi Wikipedia), che anche ad ogni particella fosse associato un non ben definito moto periodico T (e quindi una fase S=kx±wt) e che perciò valesse la relazione:
E=mc2=h/T
dove E ed m sono rispettivamente l'energia e la massa relativistica di una qualsiasi particella.
In particolare, per una particella in quiete di massa m0, risulterà per ipotesi:
In particolare, per una particella in quiete di massa m0, risulterà per ipotesi:
E0=m0c2=h/T0.
Quindi, valendo come è noto la relazione relativistica tra la massa in moto con velocità v e quella in quiete (cioè m=γm0 con γ=1/(1-(v/c)2)1/2), si ricava dal rapporto E/E0 una relazione tra i due periodi in quiete T0 e in moto T rispettivamente (associati entrambi per ipotesi alla particella):
T0=γT.
Perciò, fissato ad esempio il punto x0=0, la fase S=k0x0±w0t0 del moto periodico della particella in quiete diventa per ipotesi:
S=w0t0
dove, per quanto visto sopra, risulta:
w0=2π/T0=2π/γT=w/γ.
Mentre t0 è definito in funzione di x e di t secondo la trasformazione relativistica del tempo (vedi le Trasformazioni di Lorentz):
t0=γ(t+vx/c2)
Possiamo perciò scrivere la fase dell'onda della particella in moto nella forma canonica:
Poiché p=mv rappresenta la quantità di moto della particella, avremo in definitiva la relazione di de Broglie:
Il comportamento simmetrico ondulatorio/corpuscolare delle particelle (cioè fotoni, elettroni, etc.) è perciò definito dalle due relazioni fondamentali:
dove il segno "+" indica che t0 esprime il tempo proprio della particella.
A questo punto possiamo esprimere la fase S dell'onda in moto in funzione di w e t (che sono i valori della particella in moto) semplicemente sostituendo i valori di w0 e t0 appena ricavati:
A questo punto possiamo esprimere la fase S dell'onda in moto in funzione di w e t (che sono i valori della particella in moto) semplicemente sostituendo i valori di w0 e t0 appena ricavati:
S=w0t0=wt+2πvx/Tc2
essendo la fase S della particella relativisticamente invariante.
Nota: la fase S espressa in funzione di (w0,t0) oppure di (w,t) non deve variare poiché definisce lo stesso fenomeno fisico**.
Possiamo perciò scrivere la fase dell'onda della particella in moto nella forma canonica:
S=wt+kx
dove abbiamo posto k=2πv/Tc2=2π/L da cui segue:
L=Tc2/v
dove L è detta lunghezza d'onda di de Broglie.
Perciò la lunghezza d'onda di de Broglie L associata per ipotesi alla particella in moto è data dalla relazione
Perciò la lunghezza d'onda di de Broglie L associata per ipotesi alla particella in moto è data dalla relazione
L=hTc2/hv=hc2/mc2v=h/mv
dove abbiamo semplicemente moltiplicato L per h/h e poi sostituito il valore di h/T=mc2.Poiché p=mv rappresenta la quantità di moto della particella, avremo in definitiva la relazione di de Broglie:
L=h/p.
Il comportamento simmetrico ondulatorio/corpuscolare delle particelle (cioè fotoni, elettroni, etc.) è perciò definito dalle due relazioni fondamentali:
E=h/T e L=h/p.
Il significato fisico della lunghezza d'onda di de Broglie è diventato evidente con il classico esperimento di Davisson e Germer (del 1927) i quali, sparando un fascio di elettroni su un reticolo cristallino di nichel, misero in evidenza un comportamento di diffrazione tipico delle onde, confermando l'ipotesi ondulatoria-corpuscolare di de Broglie***.
Nota: sul comportamento duale delle particelle vedi il post "Il dualismo onda-particella".
(*) È stato Einstein, con la sua corretta interpretazione dell'effetto fotoelettrico, ad introdurre in modo ben definito il concetto di fotone (vedi il post "Un effetto Foto-elettrico!"), mentre Planck aveva in realtà supposto l'emissione o assorbimento quantizzato delle pareti del corpo nero.
(**) La fase di un'onda S=kx±wt esprime la frazione d'onda kx=2π(x/L) e la frazione di periodo wt=2π(t/T) dello svolgersi di un fenomeno periodico; ma queste non possono dipendere dall'osservatore: il numero di cicli, per unità di spazio o di tempo, compiuti dal fenomeno fisico (che è oggettivo) deve rimanere lo stesso in tutti i sistemi di riferimento.
(***) La velocità di fase dell'onda V=w/k è priva di significato fisico poiché risulta V=E/p=c2/v>c essendo w=2πE/h e k=2πp/h (vedi sopra). Mentre la velocità di gruppo definita come Vg=dw/dk rappresenta la velocità della particella, che è assimilabile ad un pacchetto d'onde; infatti si ha dw/dk=dE/dp=v essendo E=c(m02c2+p2)1/2 (vedi Wikipedia).
(Vedi anche il post "L'Equazione della Funzione d'Onda")
(*) È stato Einstein, con la sua corretta interpretazione dell'effetto fotoelettrico, ad introdurre in modo ben definito il concetto di fotone (vedi il post "Un effetto Foto-elettrico!"), mentre Planck aveva in realtà supposto l'emissione o assorbimento quantizzato delle pareti del corpo nero.
(**) La fase di un'onda S=kx±wt esprime la frazione d'onda kx=2π(x/L) e la frazione di periodo wt=2π(t/T) dello svolgersi di un fenomeno periodico; ma queste non possono dipendere dall'osservatore: il numero di cicli, per unità di spazio o di tempo, compiuti dal fenomeno fisico (che è oggettivo) deve rimanere lo stesso in tutti i sistemi di riferimento.
(***) La velocità di fase dell'onda V=w/k è priva di significato fisico poiché risulta V=E/p=c2/v>c essendo w=2πE/h e k=2πp/h (vedi sopra). Mentre la velocità di gruppo definita come Vg=dw/dk rappresenta la velocità della particella, che è assimilabile ad un pacchetto d'onde; infatti si ha dw/dk=dE/dp=v essendo E=c(m02c2+p2)1/2 (vedi Wikipedia).
(Vedi anche il post "L'Equazione della Funzione d'Onda")
Nessun commento:
Posta un commento