mercoledì 23 maggio 2018

Trasformazioni di basi, vettori e... co-vettori!

Come avevamo già osservato nel post "Cos'è il Vettore di Posizione?" la definizione di vettore non dipende dal sistema di coordinate prescelto e quindi, se vogliamo trasformare le coordinate rispetto alle quali quel vettore è definito, saranno le sue componenti a variare* in modo che il vettore resti invariato (in modulo e direzione).

È noto che un qualsiasi vettore V può essere descritto come la combinazione lineare delle sue componenti vi moltiplicate per le rispettive basi vettoriali ei (cioè l'insieme dei vettori che generano lo spazio vettoriale); ad esempio nel caso più semplice di uno spazio bidimensionale avremo:
V=v1e1+v2e2.
Nota: vedremo più avanti il significato fisico degli indici in apice e pedice, per ora indicano le due diverse basi e rispettive componenti (attenzione: gli apici non indicano elevamenti di potenza!).

Nel caso perciò di una trasformazione di coordinate si avrà un cambio di basi ei (indicate dal trattino sotto) a cui corrisponde una variazione delle rispettive componenti vi (anch'esse indicate dal trattino) cioè:
V=v1e1+v2e2.

Se usiamo il formalismo matriciale, possiamo indicare le componenti di V come una matrice colonna, mentre le basi sono rappresentate da una matrice riga; moltiplicandole tra loro si ottiene (per l'invarianza di V):
Nota: ricordiamo che il prodotto tra due matrici tipo (m,n)x(n,p) produce una matrice (m,p) sviluppando il prodotto righe per colonne.

Supponiamo ora che le basi di V si trasformino secondo una generica matrice di trasformazione A (matrice quadrata (2x2) e invertibile in A-1):
allora affinché si ottengano di nuovo le equazioni di V sopra espresse, dovrà risultare per la trasformazione delle componenti:
Infatti moltiplicando tra loro (membro a membro) le due ultime equazioni, si ottiene di nuovo l'identità V=V (essendo AxA-1=I dove I è la matrice identità).
Nota: abbiamo implicitamente supposto, con l'introduzione della matrice di trasformazione A, una relazione lineare tra le basi.

Dato il ruolo diretto della matrice A si dice che le basi vettoriali di V si trasformano in modo covariante, mentre le sue componenti, che viceversa dipendono dalla sua inversa A-1, si trasformano in modo controvariante.

Tuttavia se la matrice A di trasformazione è ortogonale (come nel caso di una rotazione di assi cartesiani ortogonali)** allora per definizione vale la relazione A-1=At (dove At è la matrice trasposta) da cui segue, facendo la trasposta di tutta la precedente equazione:
Nota: ricordiamo che la trasposta di un vettore colonna è un vettore riga (e viceversa); inoltre risulta (At)t =A.

Ciò significa che questa ultima espressione è formalmente identica alla trasformazione covariante delle basi, e quindi (in questo caso) la distinzione tra trasformazione covariante e controvariante decade; inoltre se la trasformazione è ortogonale si conserva il prodotto scalare tra vettori.
Nota: è per tale motivo che nella fisica classica non si parla quasi mai dei due tipi di trasformazione, è sufficiente quella covariante.

Tuttavia nel caso più generale di una trasfomazione di coordinate qualunque (non ortogonale) ci chiediamo: come si trasformano le componenti di un vettore affinché questo resti invariato e il prodotto scalare si conservi?
Nota: per quanto visto sopra ciò equivale a chiedersi com'è fatta in generale la matrice di trasformazione A e la sua inversa A-1.

Consideriamo ad esempio il caso classico di un lavoro infinitesimo dL (dovuto ad una forza F impressa ad un corpo che si sposta di un tratto infinitesimo ds), così definito nel caso bidimensionale:
dL=Fds=F1dx1+F2dx2.
Vogliamo che questo prodotto scalare tra vettori si conservi rispetto ad un sistema di coordinate qualunque (come in effetti accade nella realtà fisica).
Nota: invece delle classiche coordinate (x,y) abbiamo posto x=xe y=x2, vedremo più avanti il significato degli indici messi in apice o pedice.

Consideriamo quindi una trasformazione di coordinate qualsiasi: trasformiamo ad esempio le coordinate (x1,x2) in quelle di un nuovo sistema (x1,x2) (dove le nuove coordinate sono note in funzione delle prime):
x1=x1(x1,x2)   ;   x2=x2(x1,x2)
ed inoltre esse devono ammettere la trasformazione inversa (affinché si possa passare da un sistema all'altro):
x1=x1(x1,x2)   ;   x2=x2(x1,x2).
Nota: per ipotesi tali funzioni a più variabili sono entrambe differenziabili.

Per le note formule del calcolo differenziale di una funzione si ha:
dx1=(∂x1/∂x1)dx1+(∂x1/∂x2)dx2   e   dx2=(∂x2/∂x1)dx1+(∂x2/∂x2)dx2
possiamo quindi riscrivere il dL=F1dx1+F2dx2 (sostituendo dx1 e dx2):
dL=F1(∂x1/∂x1)dx1+F1(∂x1/∂x2)dx2+F2(∂x2/∂x1)dx1+F2(∂x2/∂x2)dx2.

Se ora raccogliamo rispetto a dx1 e dx2 risulta:
dL=[F1(∂x1/∂x1)+F2(∂x2/∂x1)]dx1+[F1(∂x1/∂x2)+F2(∂x2/∂x2)]dx2
e il dL può essere riscritto nel nuovo sistema di coordinate:
dL=Fds=F1dx1+F2dx2
avendo posto
F1=F1(∂x1/∂x1)+F2(∂x2/∂x1)
F2=F1(∂x1/∂x2)+F2(∂x2/∂x2)
ed essendo per le solite formule differenziali
dx1=(∂x1/∂x1)dx1+(∂x1/∂x2)dx2 
dx2=(∂x2/∂x1)dx1+(∂x2/∂x2)dx2.
Le derivate parziali (∂xi/∂xj) e (xj/∂xi) rappresentano perciò gli elementi, rispettivamente, della matrice di trasformazione A ed A-1 per F e ds.

In sintesi possiamo scrivere per le componenti di F e ds (con la notazione di Einstein sugli indici ripetuti che sottintende il simbolo di sommatoria):
Fj=Fi(∂xi/∂xj)   e   dxj=dxi(xj/∂xi)
(con i, j=1, 2) grazie alle quali il prodotto scalare resta invariato.
Nota: per chiarimenti su questa derivazione vedi la lezione di Arrigo Amadori "Definizione di tensore".

Perciò la legge generale di trasformazione delle componenti Ai di un vettore, che chiameremo covariante (o covettore) e quelle Bi del rispettivo vettore controvariante, tale per cui il prodotto scalare C=AiBi=AjBj si conservi, è la seguente (come mostrato per Fj e dxj):
Aj=Ai(∂xi/∂xj)   e   Bj=Bi(xj/∂xi)
con la solita regola di sommatoria sugli indici ripetuti (con i, j=1, 2, ... n).
Nota: per convenzione gli apici indicano le componenti di un vettore mentre i pedici quelle di un covettore.

Ora nel contesto matriciale di un prodotto scalare, le componenti Ai di un vettore riga definiscono un covettore (o vettore covariante) che, applicato a un vettore colonna (o vettore controvariante) di componenti Bi, produce C=AiBi cioè un elemento scalare (del campo K) dallo spazio vettoriale V: l'insieme dei covettori (o funzionali f:V->K) definisce lo spazio duale***.
Nota: ricordiamo che il prodotto scalare tra due vettori A e B viene spesso indicato come <A,B>.

(*) Non sempre coordinate e componenti coincidono, nel caso ad esempio di coordinate curvilinee angolari queste non corrispondono alle componenti di un vettore, essendo quest'ultime delle lunghezze.
(**) Una trasformazione ortogonale viene espressa rispetto ad una base ortonormale (come ad esempio quella canonica degli assi cartesiani), tramite una matrice ortogonale e quindi invertibile.
(***) Data ad esempio la base canonica e1=(1,0)t, e2=(0,1)t (vettori colonna) possiamo definire una base canonica duale come e1=(1,0), e2=(0,1) (vettori riga) che rispetta la condizione generale di dualità <ei,ej>=δji (dove δji è la delta di Kronecker); per un qualsiasi vettore V risulta perciò: V=eivi=ejvj.
(Si pone <ei,ej>=δji affinché risulti correttamente: <A,B>=(eiAi)(ejBj)=AiBi)

giovedì 5 ottobre 2017

Clausius e Carnot: cicli, principî e motori!

Come è noto esistono due formulazioni principali ed equivalenti del Secondo principio della termodinamica (vedi Wikipedia):

I) Clausius (1822-1888): non è possibile che il calore fluisca spontaneamente da temperature più basse a temperature più alte.
Nota: in realtà è possibile che il calore fluisca da un corpo freddo ad uno caldo (come nella macchina frigorifera) ma ciò non può accadere spontaneamente.

II) Kelvin (1824-1907): non è possibile realizzare una macchina termica ciclica che trasformi il calore integralmente in lavoro.
Nota: in effetti il calore può trasformarsi integralmente in lavoro (ad esempio in una trasformazione isoterma) ma mai in una trasformazione ciclica.

Ricordiamo che con macchina termica si intende un dispositivo che opera tra due temperature e converte calore in lavoro in modo ciclico, tornando al punto di partenza dopo aver prodotto una certa quantità di lavoro (vedi Wikipedia).

Inoltre esiste una terza importante formulazione equivalente del secondo principio della termodinamica che abbiamo già descritto nel post "Entropia: una grandezza anomala!" che afferma:
III) Clausius: in un sistema isolato e per una trasformazione irreversibile l'entropia tende sempre ad aumentare.

In particolare si ricordi che l'entropia S è una funzione che dipende dallo stato termodinamico in cui si trova il sistema; se ad esempio un sistema passa dallo stato A a quello B avremo per la sua variazione di entropia ∆S:
∆S=SB-SA=ABdS
dove dS=δQrev/T è per definizione l'entropia infinitesima e dove Qrev è la quantità di calore assorbito o ceduto in maniera reversibile e isoterma dal sistema a temperatura T.
Nota: per chiarimenti sulla definizione di entropia vedi il post "Entropia: una grandezza anomala!".

Poiché S è una funzione di stato possiamo prendere oltre ad essa, come seconda variabile, la temperatura T del sistema per descrivere una qualsiasi trasformazione reversibile di un gas ideale sul piano cartesiano T-S (diagramma entropico di Gibbs) invece che sul noto piano di Clapeyron p-V.
Nota: poiché l'equazione dei gas ideali è pV=nRT fissato il numero di moli n possiamo in generale descrivere il sistema con due sole variabili di stato.

Si noti subito che su questo diagramma una trasformazione isoterma (cioè T=costante) è descritta da una linea orizzontale, mentre una adiabatica (cioè Q=0) è rappresentata da una linea verticale (essendo S=costante).

Se ad esempio consideriamo un ciclo formato da due trasformazioni isoterme e due adiabatiche (alternate in sequenza) avremo un motore termico reversibile che trasforma calore in lavoro, meglio noto come ciclo di Carnot, descritto nel piano entropico T-S da una linea rettangolare:


È immediato calcolare il calore assorbito o ceduto reversibilmente nelle due trasformazioni isoterme (posto T2>T1 e S2>S1); avremo rispettivamente seguendo il diagramma (e ricordando che δQrev=TdS):
Qf=S1S2TdS=T2(S2-S1)   e   -Qc=S2S1TdS=T1(S1-S2)
dove per definizione Qf è il calore fornito al sistema mentre -Qc è quello ceduto all'ambiente dal sistema.

Inoltre poiché la variazione di energia interna ∆U è nulla alla fine del ciclo (essendo U una funzione di stato), il lavoro svolto dalla macchina sull'ambiente durante la trasformazione ciclica è -L=Q (essendo per il Primo principio della termodinamica ∆U=L+Q) e quindi si ha:
-L=Qf-Qc=T2(S2-S1)+T1(S1-S2)=(T2-T1)(S2-S1)
essendo per definizione -L il lavoro fatto dal sistema e Q=Qf-Qc il calore totale fornito al sistema.
Nota: si osservi che l'area del rettangolo (T2-T1)(S2-S1) rappresenta proprio il calore Q scambiato durante la trasformazione.

Se ricordiamo che il rendimento di una macchina termica reversibile (o meglio l'efficienza di conversione calore/lavoro) è in generale così definito:
ηrev=-L/Qf=(Qf-Qc)/Qf=1-Qc/Qf
allora inserendo i valori di -Qc e Qf prima ricavati si ha:
1-Qc/Qf=1+T1(S1-S2)/T2(S2-S1)=1-T1/T2
da cui segue un risultato fondamentale del ciclo reversibile di Carnot:
Qf/T2-Qc/T1=0.
Nota: si noti che se T1=T2 segue ηrev=0 cioè senza una differenza di temperatura ∆T non si può ottenere lavoro da una macchina termica.

Al fine di generalizzare questo risultato per qualsiasi ciclo termodinamico, dividiamo in due cicli di Carnot quello precedente, come mostrato in figura:


Si noti che nella zona di sovrapposizione delle adiabatiche in (S1+S2)/2 i contributi di lavoro si elidono e quindi il processo è equivalente a quello visto sopra di una sola macchina di Carnot che lavori tra le temperature T1 e T2.

Se perciò consideriamo un qualsiasi ciclo termodinamico, la curva del diagramma T-S potrà essere approssimata quanto si vuole da un insieme infinito di cicli di Carnot (rappresentati da rettangolini di larghezza infinitesima dS), compresi tra le rispettive temperature dell'estremità superiore Tmax e inferiore Tmin come mostrato in figura:


Perciò, come visto sopra, per ogni rettangolo di larghezza infinitesima dS e altezza compresa tra Tmax e Tmin possiamo scrivere per gli incrementi infinitesimi di calore:
δQf/Tmax-δQc/Tmin=0 
e sommando su tutti gli infiniti rettangoli:
cicloδQrev/T=0
relazione valida per qualsiasi ciclo termodinamico reversibile.
Nota: lo stesso risultato si può ottenere su un diagramma p-V dove però i cicli di Carnot non sono rappresentati da un semplice rettangolo.

Infine per estendere questo risultato notevole anche ai cicli irreversibili, enunciamo un precedente risultato* ottenuto da Carnot** (vedi Wikipedia):
IV) Carnot (1796-1832): il rendimento di una macchina termica irreversibile che lavora tra due temperature, è sempre minore del rendimento ηrev di una macchina equivalente ma reversibile: ηirr<ηrev.
Nota: si dimostra che il rendimento di tutte le macchine reversibili è uguale.

Quindi essendo ηrev=1-Qc/Qf allora a parità di condizioni il calore ceduto -Qc in un ciclo irreversibile, sarà maggiore (in valore assoluto) del caso reversibile (poiché deve risultare ηirr<ηrev).
Ciò significa che per ogni rettangolo infinitesimo del diagramma prima definito, ma per un ciclo irreversibile, si ha:
δQf/Tmax-δQc/Tmin<0 
e perciò in generale per un qualsiasi ciclo irreversibile:
cicloδQirr/T<0.
che è la famosa diseguaglianza di Clausius***.
Nota: per approfondire questa relazione vedi il post "Entropia: una grandezza anomala!".

(*) Questo risultato è stato ottenuto da Carnot nel 1824 cioè prima (per motivi anagrafici) che Clausius e Kelvin enunciassero il secondo principio (da cui però viene solitamente derivato questo teorema!).
(**) Anche questo IV enunciato può essere considerato una formulazione equivalente del secondo principio della termodinamica.
(***) Si può derivare la diseguaglianza di Clausius partendo in modo indifferente da uno qualsiasi degli enunciati I-IV sopra esposti (dato che se ne può dimostrare l'equivalenza).

lunedì 12 giugno 2017

Coriolis e le coordinate Polari!

La definizione di coordinate polari è semplice (vedi Wikipedia):
“In matematica, il sistema di coordinate polari è un sistema di coordinate bidimensionale nel quale ogni punto del piano è identificato da un angolo θ e da una distanza r da un punto fisso O detto polo" che può ad esempio coincidere con il centro di un sistema cartesiano (vedi figura).

Inoltre è importante osservare che "un sistema di coordinate polari (r,θ) è in corrispondenza biunivoca con un sistema di coordinate cartesiane (X,Y), ossia ad un vettore di coordinate cartesiane ne corrisponde uno e uno solo in coordinate polari"; la corrispondenza tra le coordinate dei due sistemi nel primo quadrante (cioè per x>0 e y≥0), è la seguente:
x=rcosθ   e   y=rsinθ
dove r=(x2+y2)1/2 e θ=arctan(y/x) (essendo y/x=tanθ).
Nota: per gli altri valori di x e y si deve correggere la definizione di θ data sopra con il termine  (vedi Wikipedia).

Se le coordinate cartesiane sono ideali per descrivere i moti traslazionali quelle polari si adattano meglio ai moti rotazionali dato che esprimono il moto di un punto nella componente lungo r (che definisce l'allontanamento o l'avvicinamento dall'origine) e nella componente tangente a θ (che invece rappresenta la rotazione attorno all'origine).

Consideriamo ad esempio un sistema cartesiano (X,Y) e facciamo coincidere il punto di origine O con il polo di un sistema di coordinate polari (r,θ) come descritto in figura:


Indichiamo con i vettori di posizione P(t) e Pw(t) il punto P in moto rispetto al sistema di riferimento polare quando quest'ultimo è, rispettivamente, in quiete (cioè w=0) oppure quando è in rotazione (dove w indica appunto la velocità di rotazione angolare del sistema polare); iniziamo perciò a ricavare le relazioni della velocità e della accelerazione in coordinate polari quando w=0.
Nota: per la definizione del vettore di posizione vedi il post "Cos'è il Vettore di Posizione?".

Innanzitutto in coordinate polari possiamo definire il vettore di posizione P(t) come:
P(t)=r(t)er(t)
dove er indica il versore radiale (cioè un vettore unitario con origine in O e direzione lungo r come mostrato in figura); questa relazione, che lega la posizione di P ad ogni istante t, è chiamata legge oraria del moto.
Nota: ricordiamo invece che in coordinate cartesiane (bidimensionali) risulta P(t)=i(t)x(t)+j(t)y(t) dove i(t) e j(t) sono i relativi versori.

Se quindi vogliamo trovare la velocità v(t) basta derivare P(t) rispetto al tempo e si ottiene:
v(t)=dP(t)/dt=r'er+re'r=r'er+rθ'eθ
poiché si può facilmente mostrare* che e'r=θ'eθ dove eθ indica il versore tangente a θ (e quindi perpendicolare a er)** diretto in verso antiorario.

Si osservi come la velocità v(t) del punto P sia composta in ogni istante da una componente radiale vr=r'er e una angolare vθ=rθ'eθ ad essa perpendicolare (abbiamo omesso per semplicità la variabile t).

Inoltre l'accelerazione a(t) si ottiene a sua volta per derivazione di v(t):
a(t)=dv(t)/dt=r''er+r'e'r+r'eθ+rθ''eθ+rθ'e'θ 
ed essendo e'θ=-θ'er (vedi la nota*) segue raccogliendo i termini:
a(t)=(r''-rθ'2)er+(rθ''+2r'θ')eθ.

Anche in questo caso l'accelerazione è composta da una componente radiale ar=(r''-rθ'2)er (dove compare l'accelerazione centripeta -rθ'2er diretta verso l'interno) e una angolare aθ=(rθ''+2r'θ')eθ (dove il termine 2r'θ'eθ è detta accelerazione di Coriolis nel caso particolare in cui w=0).

Supponiamo adesso che il sistema di coordinate polari (r,θ) ruoti intorno all'asse Z con velocità angolare w(t) (sempre in riferimento alla figura precedente); indicheremo quindi con (r,θ) il sistema in rotazione (si noti che r è invariato nei due riferimenti) con i relativi versori er e eθ.

In questo caso per derivare il moto di Pw(t)=r(t)er(t) rispetto al sistema polare in rotazione (r,θ), oltre alla velocità angolare θ' di Pw(t) dovremo considerare anche la velocità di rotazione angolare w del sistema di riferimento; basterà quindi fare la seguente sostituzione nelle equazioni di v(t) e a(t) prima ricavate, per ottenere la velocità vw(t) e l'accelerazione aw(t) rispetto al sistema in rotazione:
θ'=>(θ'+w)
risultando θ'=θ' quando w=0 e θ'=w quando Pw ruota solidale con la piattaforma (θ'=0).
Nota: la somma dei due vettori θ' e w definisce un terzo vettore posto anch'esso lungo l'asse Z di modulo (θ'+w).

Sostituendo perciò a θ' il valore di (θ'+w) e indicando con er e eθ i versori del sistema in rotazione, si ottengono direttamente le seguenti relazioni.
Per la velocità:
v(t)=r'er+r(θ'+w)eθ=vw+wreθ
dove vw=dPw/dt=r'er+rθ'eθ è la velocità rispetto al riferimento rotante (essendo Pw=rer), mentre il termine wreθ è chiaramente dovuto alla rotazione angolare w del sistema in moto.
Nota: possiamo anche scrivere, sotto forma di prodotto vettoriale: wreθ=wxPw poiché il vettore wreθ è perpendicolare sia a w che a Pw.

E quindi anche per l'accelerazione avremo per sostituzione:
a(t)=[r''-r(θ'+w)2]er+[r(θ'+w)'+2r'(θ'+w)]eθ
e sviluppando i vari termini nelle parentesi si ha
a(t)=aw+2w(r'eθ-rθ'er)-rw2er+rw'eθ
dove aw=dvw/dt=(r''-rθ'2)er+(rθ''+2r'θ')eθ è l'accelerazione rispetto al riferimento rotante (essendo vw=r'er+rθ'eθ) mentre risulta rw'eθ=0 se la rotazione w del sistema è costante.
Nota: poiché vw=r'er+rθ'eθ è la velocità rispetto al riferimento rotante, allora (r'eθ-rθ'er) rappresenta un vettore perpendicolare a vw (essendo (r'er+rθ'eθ)x(r'eθ-rθ'er)=0) e perciò possiamo anche scrivere: 2w(r'eθ-rθ'er)=2wxvw che infatti è un vettore perpendicolare a w e vw.
(Si noti che il vettore (r'eθ-rθ'er)  ha la stessa direzione della rotazione w)

Se ora vogliamo determinare quali sono le forze a cui è sottoposta una massa m rispetto ad un riferimento in rotazione con velocità costante w avremo, secondo la legge di Newton applicata in modo improprio ad un sistema non inerziale (perché così introduciamo delle forze che non sono reali):
Fw=>maw=ma-2mw(r'eθ-rθ'er)+mrw2er
dove il secondo termine rappresenta la cosiddetta forza di Coriolis (il meno indica la direzione contraria alla rotazione w, vedi la nota sopra) mentre il terzo termine è la forza centrifuga (con segno più perché diretta verso l'esterno); entrambe queste forze sono dette apparenti (cioè non generate dall'interazione con altri corpi) perché dovute esclusivamente alla rotazione w del sistema di riferimento (infatti si annullano per w=0).
Nota: per chiarimenti sulle forze apparenti vedi il post "Una forza del tutto... apparente!".
(Qui puoi vedere un video del MIT che mostra in pratica l'effetto Coriolis!)

(*) Consideriamo la variazione infinitesima er=er(t+t)-er(t)=ereθ (risulta ereθ poiché er unisce le punte dei due vettori differenza ed è diretto come eθ, vedi la nota**) da cui e'r=limer/∆t=lim(∆er/∆t)eθ=θ'eθ. Analogamente si ricava che e'θ=limeθ/∆t=lim(-∆eθ/∆t)er=-θ'er (il meno è dovuto alla rotazione antioraria di θ(t) e indica il verso opposto a er).
(**) In generale per un versore u si ha uxu=1 (prodotto scalare) e quindi derivando d(uxu)/dt=u'xu+uxu'=2u'xu=0 ciò implica che u' è sempre perpendicolare a u (e ciò vale anche per er e eθ).

mercoledì 5 agosto 2015

Onde, armoniche e... Fourier!

Abbiamo già trattato la definizione formale della funzione periodica di un'onda nel post "Ma cos'è una 'Onda?'" (a cui rimandiamo); qui vogliamo invece approfondire un aspetto importante dei moti oscillatori che riguarda le cosiddette frequenze armoniche:
"Nello studio dei fenomeni oscillatori, le frequenze armoniche sono le frequenze il cui valore è multiplo intero della frequenza base (frequenza fondamentale) di un'onda" (vedi Wikipedia).

Questa semplice e formale definizione riguarda un aspetto fondamentale delle funzioni periodiche che trae origine dall'analisi di Fourier: "una branca di ricerca che prende il suo stimolo dalle ricerche di Jean Baptiste Joseph Fourier, che nei primi anni dell'ottocento, riuscì a dimostrare che una qualunque funzione periodica poteva essere vista come una somma di infinite 'opportune' funzioni sinusoidali (seno e coseno)" (vedi Wikipedia).

Infatti sotto alcune ipotesi esiste una serie convergente (detta appunto di Fourier), grazie alla quale possiamo esprimere una funzione periodica f(t) (con periodo ) nel modo seguente:
f(t)=(1/2)a0+a1cos(wt)+...+ancos(nwt)+b1sin(wt)+...+bnsin(nwt)
dove an e bn sono opportuni coefficienti (con n=0, 1, 2, ...), w=2π/T è la pulsazione dell'onda base e i termini n/T definiscono le frequenze armoniche prima introdotte (per n=1 si ha la frequenza fondamentale 1/T).
Nota: una funzione f(t) è periodica (di periodo T) se risulta f(t)=f(t+T) ed è sempre possibile associarle una nuova funzione g(t)=f(tT/2π) di periodo .

Senza dare una dimostrazione della serie di Fourier (per questo vedi il post su Vialattea.net), diciamo solo che la relazione è vera se f(t) non solo è periodica ma è anche continua (almeno a tratti) nell'intervallo [-π, π]; mentre i coefficienti an e bn sono così definiti*:
an=(1/π)∫πf(t)cos(nwt)dt   e   bn=(1/π)∫πf(t)sin(nwt)dt.
Nota: per vedere come vengono calcolati i coefficienti si veda ad esempio lo sviluppo in serie della funzione a dente di sega (vedi Wikipedia).
(Vedi anche le ottime lezioni di Marco Codegone sulla serie di Fourier)

Per chiarire il significato fisico alla serie di Fourier, supponiamo che le onde armoniche in essa contenute siano onde di tipo acustico e quindi che la nostra funzione f(t) rappresenti un particolare suono, come ad esempio quello emesso da uno strumento musicale.

Questo suono sarà costituito dalla nota di frequenza fondamentale 1/T sommata a quelle di tutte le armoniche di frequenza n/T che però sono di minore intensità (affinché la serie converga); ad esempio, se la frequenza base è quella della nota la corista (cioè quella del diapason fissata per definizione a 440Hz), le varie armoniche sovrapposte ad essa definiscono il timbro della nota, che caratterizza lo strumento da cui è stata emessa.
Nota: fatta eccezione per il diapason (a mono frequenza) ogni strumento musicale emette, oltre a quella fondamentale, le sue proprie armoniche.

Sorprendentemente il nostro cervello riconosce le varie armoniche contenute in un qualsiasi suono f(t) come se effettuasse l'analisi di Fourier dell'onda, la quale viene percepita dal nostro orecchio interno**; in questo modo possiamo riconoscere non solo la nota fondamentale di un dato suono ma anche le sue armoniche che definiscono il timbro della nota emessa.

È sulla base di questa capacità di analisi del nostro cervello e del suo gradimento per la consonanza tra due o più note (cioè la coincidenza degli armonici e l'assenza di battimenti) che è stata costruita la scala naturale delle sette note musicali; una volta scelta una nota di riferimento (che chiameremo do) le altre note sono le armoniche di quella base: il sol ad esempio è la terza armonica del do, il mi la quinta, il re la nona e così via fino a formare la scala di do maggiore (per trasposizioni di ottava)***.
Nota: per un approfondimento su questi argomenti vedi l'articolo di Andrea Frova "Interazioni Forti: Musica e Scienza".

(*) Per ottenere i coefficienti an e bn basta moltiplicare f(t) (di cui supponiamo esista la serie sopra definita) per cos(nwt) oppure per sin(nwt) e quindi integrarla tra π e ; una volta integrati i prodotti dei vari seni e coseni, i termini si annullano tutti, tranne quello al quadrato relativo al coefficiente n-esimo considerato (la cui integrazione è pari a π).
(**) È la membrana basilare, contenuta nell'orecchio interno, che si mette a vibrare in funzione delle varie frequenze armoniche che costituiscono il suono percepito; queste vibrazioni (spazialmente separate sulla membrana, in relazione alla frequenza) vengono trasmesse al cervello attraverso distinti segnali elettrici, corrispondenti alle varie zone della membrana.
(*** ) Se la nota do ha frequenza 1 allora la seconda armonica avrà frequenza 2 (è il do dell'ottava superiore) mentre la terza armonica avrà frequenza 3 che (per ricondurla alla prima ottava) dobbiamo dividere per 2 ottenendo la frequenza 3/2 che chiameremo sol etc.; si ottiene così tutta la scala naturale.
(Si ricordi che raddoppiando la frequenza si ottiene sempre la stessa nota, ma di un'ottava più alta.)

giovedì 10 luglio 2014

Il calcolo degli stati di energia: dN=g(E)dE

In questo post approfondiremo quanto abbiamo già accennato nel post "L'Entropia secondo Boltzmann" a proposito della relazione tra energia cinetica E, quantità di moto p di una particella libera e il fattore di probabilità g(E) di ogni livello E del sistema di particelle considerato.

Ricordiamo che valendo la relazione classica E=p2/2m=(px2+py2+pz2)/2m ciò significa che ad un dato livello di energia E (scalare) possono corrispondere diverse orientazioni di (vettore) e che quindi è diversa la probabilità che le particelle occupino un dato stato di energia.
Nota: consideriamo particelle libere e puntiformi (come quelle di un gas ideale) perciò la loro energia sarà solo quella cinetica (trascuriamo cioè quella potenziale e di rotazione).

Ora in accordo con la nostra ipotesi statistica delle distribuzioni possibili di un sistema di particelle (vedi il post "L'Entropia secondo Boltzmann"), si avrà che i vari livelli di energia hanno una diversa probabilità di essere occupati in relazione al numero di stati possibili N(E) (da non confondere col numero di particelle) che corrispondono ad una fissata energia E.

Ci proponiamo perciò di trovare, considerando una variazione continua di energia (ciò vale per grandi volumi come vedremo), il numero elementare dN di stati compresi nell'intervallo infintesimo dE; vogliamo cioè ricavare il cosiddetto fattore di degenerazione dei livelli g(E)=dN(E)/dE.

Si osservi innanzitutto che se fissiamo la quantità di moto p allora tutte le possibili orientazioni del vettore p (posto in un punto qualsiasi dello spazio) definiscono un guscio sferico di area 4πp2 e quindi gli stati con momento compreso tra p e p+dp saranno compresi nello strato sferico 4πp2dp.
Nota: stiamo in effetti considerando lo spazio delle fasi dove alle coordinate spaziali sono associate le coordinate dei momenti.

Se perciò consideriamo tutto lo spazio contenuto nel volume V (dove sono confinate le particelle) possiamo scrivere che il numero elementare di stati dN con momento compreso tra p e p+dp è complessivamente (moltiplichiamo cioè 4πp2dp per V):
dN=CV4πp2dp
dove abbiamo introdotto il termine C che è una costante dimensionale da definire.

Poiché vogliamo esprimere dN in funzione di dE, grazie alla relazione differenziale dp=(1/2)(2m)1/2E-1/2dE (essendo p=(2mE)1/2) possiamo sostituire i valori di dp e p2 nell'equazione precedente:
dN=CV(2m)3/2E1/2dE
e quindi in definitiva si ottiene
g(E)=dN/dE=2πCV(2m)3/2E1/2.
Nota: se vogliamo trattare g(E) come una funzione di probabilità dobbiamo normalizzare a 1 l'integrale di dN=g(E)dE introducendo la costante di normalizzazione 1/N (vedi Wikipedia).

Resta perciò da determinare la costante C che tuttavia può essere ottenuta solo attraverso considerazioni di tipo quantistico, in particolare facendo riferimento al caso tipico di una buca di potenziale (vedi Wikipedia).

Infatti in questo modello teorico si ottiene che i possibili livelli discreti di energia E di una particella, contenuta in un volume cubico di lato a, sono dati dalla relazione:
E=(h2/8ma2)k2
dove k2=n12+n22+n32 (n1, n2 e n3 sono interi positivi) e h è la costante di Planck.
È chiaro che i livelli di energia dipendono dal parametro k (essendo h2/8ma2 una quantità costante), cioè da quali e quanti valori può assumere questo parametro discreto nell'intervallo considerato.
Nota: si osservi che per grandi volumi (cioè per a elevati) i livelli discreti E formano in pratica uno spettro continuo di energia.

Ebbene poiché k può essere visto come un punto nello spazio di coordinate n1, n2 e n3, allora tutti gli stati N di energia compresa tra 0 ed E (supponiamo uno spettro continuo) saranno compresi nel volume di una sfera di raggio k moltiplicato per il fattore 1/8 (poiché dobbiamo considerare solo gli interi positivi):
N=(1/8)(4/3)πk3.
Nota: se disegnamo una sfera centrata nell'origine degli assi cartesiani e consideriamo solo lo spicchio compreso tra gli assi positivi, il volume si riduce a 1/8 della sfera.

A questo punto dalla relazione precedente di E possiamo ricavare k3 (basta elevare k2=(8ma2/h2)E alla 3/2) ottenendo:
k3=(8ma2/h2)3/2E3/2=(8m)3/2(a3/h3)E3/2
da cui segue* (ricordando che V=a3):
N=(8/6)(πV/h3)(2m)3/2E3/2.

Se consideriamo un volume molto grande come dicevamo (questa è in effetti una delle ipotesi statistiche per i sistemi termodinamici, vedi Wikipedia) possiamo derivare rispetto a E (essendo N(E) in pratica una funzione continua), ottenendo perciò:
g(E)=dN/dE=(2πV/h3)(2m)3/2E1/2.
Se infine confrontiamo questa relazione con quella analoga trovata prima classicamente, si ricava subito il valore della costante C=1/h3.
Nota: ciò significa che, nel caso classico, per calcolare il numero esatto degli stati dobbiamo dividere lo spazio delle fasi in cellette di dimensione h3.

Per concludere possiamo calcolare la funzione di partizione Z già introdotta nel post "La Legge statistica di Distribuzione" che, ricordiamo, è stata così definita: Z=∑igie-Ei/kBT.
Quindi passando al continuo il simbolo di sommatoria può essere sostituito con quello di integrale (tra zero ed infinito) ottenendo**:
Z=e-E/kBTg(E)dE=(V/h3)(2πmkBT)3/2
dove V è il volume che contiene il gas, m la massa delle singole particelle, kB la costante di Boltzmann, T la temperatura assoluta e h la costante di Planck
Nota: questo risultato è valido per un gas ideale dove sono soddisfatte le ipotesi statistiche, come descritto nel post "L'Entropia secondo Boltzmann".

(*) Forse è utile ricordare che 83/2=(83)1/2=(2343)1/2=23/2(43)1/2=23/28.
(**) Sostituendo nell'integrale di Z il valore di g(E) prima ottenuto si ha:
 Z=e-E/kBTg(E)dE=(2πV/h3)(2m)3/2e-E/kBTE1/2dE=(V/h3)(2πmkBT)3/2
essendo ∫e-E/kBTE1/2dE=(1/2)(π)1/2(kBT)3/2.

mercoledì 11 giugno 2014

Entropia statistica e termodinamica

Nei due post "Entropia: una grandezza anomala!" e "L'Entropia secondo Boltzmann" (a cui rimandiamo) sono stati introdotti due diversi modelli fisici per definire il concetto di entropia; rispettivamente uno di tipo termodinamico (dove dS=δQ/T) e l'altro di tipo statistico (con S=kBlnP).

Vogliamo ora mostrare come queste due descrizioni siano tra loro profondamente collegate e che in effetti abbiamo derivato, a partire da due modelli teorici diversi, lo stesso tipo di grandezza fisica: l'entropia di un sistema di particelle.

Riscriviamo quindi il risultato ottenuto per l'entropia statistica (vedi il post "La Legge statistica di Distribuzione"):
S=kBlnP=kBNlnN-kBiniln(ni/gi)
rimarcando che tale relazione è sempre valida, anche fuori dall'equilibrio; mentre P è la probabilità di una data distribuzione delle particelle nei vari livelli di energia.

Nello stesso post abbiamo anche derivato la legge di distribuzione delle particelle del sistema sui vari livelli di energia in condizioni di massima probabilità, cioè per ipotesi nello stato di equilibrio termodinamico:
ni=(N/Z)gie-Ei/kBT
oppure utilizzando le proprietà dei logaritmi:
ln(ni/gi)=-ln(Z/N)-Ei/kBT.
Nota: ricordiamo che per ipotesi il sistema passa la maggior parte del tempo nello stato che può realizzarsi nel maggior numero di modi, cioè quello di massima probabilità o di massima entropia.

Considereremo perciò una trasformazione reversibile, dove possiamo supporre che il sistema passi da una distribuzione all'altra in modo che si realizzi sempre lo stato di massima probabilità e valga quindi la legge di distribuzione ni sopra riportata (poiché il sistema attraversa solo stati di equilibrio).
Nota: ricordiamo che quando una trasformazione è reversibile il sistema passa per definizione solo attraverso stati di equilibrio termodinamico.


Sostituiamo quindi il valore di ln(ni/gi) nell'equazione di S ottenendo (in condizioni di equilibrio o di massima entropia): 
S=kBNlnN+kBln(Z/N)∑ini+(1/T)∑iniEi
da cui, ricordando le due condizioni N=∑ini e E=∑iniEi (dove N sono le particelle mentre E è l'energia totale del sistema) segue infine:
S=kBN(lnN+ln(Z/N))+E/T=kBNlnZ+E/T.
Tale relazione esprime l'entropia S(N,Z,E,T) in funzione dei parametri caratteristici del sistema (cioè il numero di particelle N, la funzione di partizione Z, l'energia totale E e la temperatura assoluta T).
Nota: ricordiamo che Z dipende dalla struttura microscopica del sistema e vale Z=∑igie-Ei/kBT (vedi il post "La Legge statistica di Distribuzione").

Poiché stiamo trattando una trasformazione reversibile possiamo supporre* che S sia una funzione differenziabile (dato l'elevato numero di particelle supponiamo che ni vari con continuità) così possiamo calcolare il dS=(∂S/∂Z)dZ+(∂S/∂E)dE+(∂S/∂T)dT (fissando il numero N di particelle e utilizzando le regole di derivazione):
dS=d(kBNlnZ+E/T)=kB(N/Z)dZ+(1/T)dE-(1/T2)EdT.
Nota: stiamo considerando un sistema chiuso che può scambiare solo energia con l'ambiente ma non massa, quindi N è costante.

A questo punto vogliamo derivare una relazione che leghi il primo termine del terzo membro dell'equazione precedente (cioè kB(N/Z)dZ) all'energia E e alla temperatura T (come risulta per gli altri due termini).

Poichè sappiamo che Z(Ei,T)=∑igie-Ei/kBT dove gi è costante per ogni dato livello Ei (vedi il post "La Legge statistica di Distribuzione"), calcoliamo il differenziale dZ=i(∂Z/∂Ei)dEi+(∂Z/∂T)dT:
dZ=-(1/kBT)∑igie-Ei/kBTdEi+(1/kBT2)∑igiEie-Ei/kBTdT.
Perciò il termine kB(N/Z)dZ contenuto nel dS prima ricavato diventa:
kB(N/Z)dZ=-(1/T)∑i(N/Z)gie-Ei/kBTdEi+(1/T2)∑i(N/Z)giEie-Ei/kBTdT
ed infine ricordando che ni=(N/Z)gie-Ei/kBT si ha:
 kB(N/Z)dZ=-(1/T)∑inidEi+(1/T2)∑iniEidT.

Facciamo ora qualche considerazione per attribuire un significato fisico al primo termine inidEi che compare al secondo membro della precedente equazione; mentre per il secondo termine sappiamo che E=∑iniEi è l'energia del sistema.

Come abbiamo mostrato nel post "Il Principo di Conservazione... termodinamico!", per il primo principio della termodinamica possiamo scrivere, per una trasformazione reversibile (e quindi differenziabile):
dE=δL+δQ
dove dE indica una variazione infinitesimale dell'energia interna dovuta al lavoro elementare δL (fatto sul sistema) e al calore δQ (fornito al sistema).
Nota: ricordiamo che l'energia interna E è una funzione di stato quindi dE è un differenziale esatto.

Inoltre, poiché nel nostro modello statistico vale la relazione E=∑iniEi, possiamo calcolare il differenziale dE=i(∂E/∂Ei)dEi+i(∂E/∂ni)dni (supponiamo che E(ni,Ei) sia una funzione differenziabile, essendo le particelle dell'ordine del Numero di Avogadro e i livelli di energia praticamente continui):
dE=∑inidEi+∑iEidni.
Nota: questa relazione statistica vale anche in condizioni di non equilibrio, come la definizione di entropia statistica (vedi il post "L'Entropia secondo Boltzmann").

Essendo evidente l'analogia tra le due precedenti relazioni (quella termodinamica e quella statistica rispettivamente), supporremo che valga l'equivalenza tra i singoli termini al secondo membro delle due equazioni**; poniamo quindi:
δL=∑inidEi   e   δQ=∑iEidni.
Ciò significa che per ipotesi il termine inidEi indica la variazione di energia dei livelli, dovuta al lavoro elementare δL fatto sul sistema durante una trasformazione; mentre iEidni indica la variazione dni delle particelle sui livelli dovuta al calore elementare δQ fornito al sistema.

Possiamo perciò riprendere l'equazione precedente che definisce il termine kB(N/Z)dZ (vedi sopra); quindi sostituendo i valori rispettivamente di δL=∑inidEi e di E=∑iniEi otteniamo:
kB(N/Z)dZ=-(1/T)δL+(1/T2)EdT. 

Questo risultato ci permette di ottenere il valore del dS che avevamo lasciato in sospeso (nel quale è presente il termine kB(N/Z)dZ appena ricavato) e quindi si ha (essendo dE=δL+δQ):
dS=-(1/T)δL+(1/T)dE=(1/T)δQ 
ricordando che tale relazione è valida, per come è stata ricavata, solo per una trasformazione reversibile. 
Nota: per quanto detto sopra il calore δQ deve essere scambiato in maniera reversibile (vedi anche il post "Entropia: una grandezza anomala!").

Abbiamo perciò ottenuto, a partire dalla definizione di entropia statistica S=kBlnP, la relativa relazione termodinamica dS=δQ/T; le due definizioni sono quindi da considerarsi dal punto di vista fisico del tutto equivalenti (ovviamente nei limiti dei due modelli e delle ipotesi avanzate)***.

(*) Una trasformazione reversibile e quindi quasi-statica "considera variazioni di tempo infinitesime, istantanee, e consente di applicare il calcolo infinitesimale e i differenziali alle equazioni termodinamiche, senza variarne il significato fisico" (vedi Wikipedia); estendiamo questa considerazione al modello statistico.
(**) Possiamo però dare qualche motivazione: se ad esempio δL è dovuto ad una variazione di volume del sistema, è corretto aspettarsi una corrispondente variazione dEi di energia dei livelli (perché cambia la struttura del sistema); mentre una variazione di calore δQ può certamente provocare una corrispondente variazione dni delle particelle sui livelli, cioè un salto delle particelle da un livello all'altro.
(Il caso quantistico di una buca di potenziale è esplicativo poiché i livelli di energia dipendono dalle dimensioni fisiche della buca, vedi Wikipedia).
(***) Si ricordi infatti che l'entropia statistica vale solo quando sono soddisfatte le ipotesi statistiche, come descritto nel post "L'Entropia secondo Boltzmann"; ciò è sicuramente vero nel caso di un gas ideale.